

SSC CGL - 170729 GRAND TEST HINTS AND SOLUTIONS

ANSWER KEY

1	(3)	26	(1)	51	(2)	76	(1)
2	(4)	27	(1)	52	(3)	77	(1)
3	(3)	28	(2)	53	(4)	78	(4)
4	(2)	29	(3)	54	(1)	79	(1)
5	(4)	30	(2)	55	(1)	80	(1)
6	(3)	31	(2)	56	(4)	81	(4)
7	(1)	32	(4)	57	(4)	82	(4)
8	(3)	33	(2)	58	(1)	83	(1)
9	(2)	34	(3)	59	(3)	84	(2)
10	(1)	35	(1)	60	(2)	85	(1)
11	(2)	36	(4)	61	(4)	86	(3)
12	(3)	37	(4)	62	(4)	87	(2)
13	(3)	38	(4)	63	(1)	88	(2)
14	(3)	39	(3)	64	(3)	89	(3)
15	(3)	40	(3)	65	(3)	90	(2)
16	(2)	41	(2)	66	(4)	91	(2)
17	(4)	42	(2)	67	(2)	92	(3)
18	(2)	43	(3)	68	(4)	93	(2)
19	(3)	44	(2)	69	(2)	94	(4)
20	(3)	45	(1)	70	(3)	95	(1)
21	(2)	46	(1)	71	(3)	96	(4)
22	(3)	47	(3)	72	(2)	97	(1)
23	(3)	48	(3)	73	(1)	98	(1)
24	(3)	49	(4)	74	(1)	99	(3)
25	(3)	50	(1)	75	(4)	100	(3)

1 (3)
$$Q \xrightarrow{+3} T \xrightarrow{+1} U$$

$$I \xrightarrow{+3} L \xrightarrow{+1} M$$

$$B \xrightarrow{+3} E \xrightarrow{+1} F$$
Similarly,

$$W \xrightarrow{+3} Z \xrightarrow{+1} A$$

2 (4)
$$6524 - 6465 = 59$$

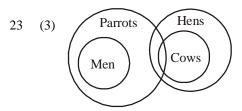
 $9638 - 59 = 9579$

3 (3)
$$64 = 8*8$$

 $144 = 12*12$
 $256 = 16*16$
 $400 = 20*20$

4 (2)
$$3*3-1=9-1=8$$

 $3*3*3+1=27+1=28$
 $4*4-1=16-1=15$
 $4*4*4+1=64+1=65$


- 5 (4) M and N are 13 th and 14th letters of the English alphabet respectively. So, M \times N corresponds to 13 x 14. Similarly, F and R are 6th and 18th letters of the English alphabet respectively. So, F \times R corresponds to 6 \times 18.
- 6 (3) The sum of digits of each numbers except 161 is an odd number.
- 7 (1) Except mare, all the others are different types of deer.
- 8 (3) Except elevation, the rest are synonymous.
- 9 (2) In all other pairs, the product of the two numbers is 126.
- 10 (1) Blood is the only non-drinkable liquid.
- 11 (2) R < S < A < K < M.
- 12 (3) The colour of the human blood is 'red' and as given, 'red' is called 'yellow'. So, the colour of human blood is 'yellow'
- 13 (3) Clearly, each letter is represented by the numeral denoting its position from the end of the English alphabet i.e.

$$Z = 1$$
, $Y = 2$, ..., $M = 14$,.... $B = 25$, $A = 26$.
Then, $SUN = S + U + N = 8 + 6 + 13 = 27$.
 SO , $CAT = C + A + T = 24 + 26 + 7 = 57$

- 14 (3) A is the father of X and Y is the sister of X. So, Y is the daughter of A
- 15 (3) 16 (2)
- 16 (2)
- 17 (4) $2 \times 2 + 2 = 6$ $6 \times 2 + 4 = 16$ $16 \times 2 + 6 = 38$ $38 \times 2 + 8 = 84$ $84 \times 2 + 10 = 178$

$$178 \times 2 + 12 = 368$$
 (2) Using the correct symbols, we have:

- Given expression = $30 \div 2 + 3 \times 6 - 5 = 15 + 18 - 5 = 28$
- 19 (3) Let Varun's age today = x years. Then, Vaurn's age after 1 year = (x + 1) years. $x + 1 = 2(x - 12) \Rightarrow x + 1 = 2x - 24 \Rightarrow x = 25$.
- 20 (3) Since B and D are twins, so B = D. Now, A = B + 3 and A = C - 3. Thus, B + 3 = C - 3 \Rightarrow D + 3 = C - 3 \Rightarrow C - D = 6.
- 21 (2) Series is; 1^2 , $(2^2 + 1)$, 3^2 , $(4^2 + 1)$, 5^2 , $(6^2 + 1)$, 7^2 So wrong term is 15
- 22 (3) In the first row, $8 \times 2 + 17 = 33$, in the second column, $12 \times 2 + 5 = 29$. Missing number = $10 \times 2 + 13 = 33$.

- 24 (3)
- 25 (3)

2

51 (2) Square root of

$$\frac{\left(0.75\right)^{3}}{\left(1-0.75\right)} + \left(0.75 + \left(0.75\right)^{2} + 1\right)$$

$$=\frac{(0.75)^3+1^3-(0.75)^3}{(1-0.75)}=\frac{1}{0.25}=4$$

Square root of 4 is 2

52 (3)
$$\sqrt[3]{(13.608)^2 - (13.392)^2}$$

= $\sqrt[3]{(27.000)(0.216)} = 3 \times 0.6 = 1.8$

53 (4) Let the present age of Mr. Suman = 10x + y yrs. Age of his wife = 10y + x yrs.

$$\Rightarrow \frac{1}{11}(10x + y + 10y + x) = (10x + y) - (10y + x)$$

$$\Rightarrow \frac{x}{y} = \frac{10}{8} = \frac{5}{4}$$

$$\therefore x: y = 5:4$$

Age of Mr. Suman = $(10 \times 5 + 4) = 54$ yrs.

Age of wife of Mr. Suman = $(10 \times 4 + 5) = 45$ yrs.

Required rati = 54 : 45 = 6 : 5.

54 (1) Total age of the 4 members of the family, 10 yrs. ago $= 24 \times 4 = 96$ yrs.

Present age of 4 members = 96 + 40 = 136 yrs. Total age of the 7 members presently = $22 \times 7 = 154$

Age of [twins + youngest child] = 154 - 136 = 18 yrs.

Let the age of the one of the twins = x yrs.

 \therefore age of the youngest = (x - 3) yrs.

Then, 2x + (x - 3) = 18 or, 3x = 21

 \therefore Age of children = 7, 7, 4 yrs.

55 (1) Let the bank makes a transaction of Rs. x crores. According to ques,

(20 - 16.5)% of x = 10.5 crore

$$\therefore x = \frac{10.5 \times 100}{3.5} = 300 \text{ crore}$$

56 (4) Let Ram's rowing rate is 'x'. Speed of current is 'y'.

Downstream time taken = $\frac{12}{x + v}$

Upstream time taken =
$$\frac{12}{x-y}$$

According to the question,

$$\frac{12}{x-y} - \frac{12}{x+y} = 6 \Rightarrow x^2 - y^2 = 4y$$
 ...(i)

Now, if speed of boat doubles = 2xTime is 1 hr. less as compared to upstream

$$\frac{12}{2x-y} - \frac{12}{2x+y} = 1 \Rightarrow 4x^2 - y^2 = 24y$$
 ...(ii)

From (i) and (ii) we get $y = \frac{8}{3}$ mph

57 (4) Total CP of [25 kg + 35 kg] rice = Rs. $(25 \times 16.50 + 35 \times 24.50)$ = Rs. 1270 SP of 25% profit = Rs. (1270×1.25) = Rs. 1587.5

$$\therefore \text{ Required rate} = \frac{1587.5}{60} = \text{Rs.}26.45 \text{ per kg}$$

58 (1)

59 (3) The total amount = Rs. (1000 + 140) = Rs. 1140 Let the 1st installment = Rs. x According to question,

$$1140 = \frac{12}{2}[2x + (12 - 1)(-10)]$$

 \Rightarrow 1140 = 6 × (2x – 110)

 $\Rightarrow 12x = 1140 + 660$

 \Rightarrow 12x = 1800 \Rightarrow x = 150

60 (2) Population of literates = 50% of 296000 = 148000 No. of male literates = 70% of 166000 = 116200 No. of female literates = 148000 - 116200 = 31800

61 (4) Let all (175) children were to get x sweets. According to ques., 140 (x + 4) = 175x

$$\Rightarrow$$
 x = $\frac{560}{35}$ = 16

 \therefore Sweets to be distribution = $16 \times 175 = 2800$

² (4) A • — ;

Given, speed of A = 60 km/hr.

Distance travelled in 3 hr = $60 \times 3 = 180$ km

At 2 pm, Speed of B = 72 km/hr

Time difference = 3 hr.

Relative velocity = (72 - 60) = 12 km/hr

Now, Time – gap (meeting) =
$$\frac{180}{12}$$
 = 15 hr. after they

met.

They will meet at 2 pm + 15 hour = 5 am.

63 (1) 25 men and 15 women complete a piece of work in 12 days.

$$\therefore \text{ Work of 8 days } = \frac{1}{12} \times 8 = \frac{2}{3}$$

Remaining work =
$$1 - \frac{2}{3} = \frac{1}{3}$$

Now, $\frac{1}{3}$ piece of work completed by 25 men in 6 days.

 \therefore 1 work can be completed by 25 men in 18 days. Now,

Total work done by women

$$= \frac{1}{12} - \frac{1}{18} = \frac{3 - 2}{36} = \frac{1}{36} = 36 \text{ days}$$

64 (3) Man : Day : Time = Work

117 33 8 =
$$\frac{4}{7}$$

X 13 9 = $\frac{3}{7}$

$$\therefore X = \frac{117 \times 33 \times 8 \times 3}{13 \times 9 \times 4} = \frac{92664}{468} = 198$$

 \therefore Required no. = 198 – 117 = 81

65 (3) Ratio of the amount of water filled in the cistern

$$=1^2:\frac{16}{9}:4=9:16:36$$

Since 36 cubic unit of water is filled by the pipe of largest diameter in 6 minutes.

1 cubic unit of water is filled by the pipe of largest

diameter =
$$61 \times \frac{3}{6}$$

61 cubic unit of water is filled by the pipe largest

diameter in
$$\frac{61 \times 36}{61} = 36$$
 minutes.

66 (4) Let the initial no. of total passengers = x
Initial ratio of male of female passengers = 3 : 1 (given)
Initial no. of total passengers (x) must be completely divisible by....

(Since
$$3 + 1 = 4$$
) ...(

Also, change in the number of initial passenger

$$=(-16+6)=-10$$

And finally no. of male to female passengers = 2:1 \Rightarrow Final no. of total passengers (i.e. x - 10).

Must be completely divisible by 3.

(Since
$$2 + 1 = 3$$
) ...(i

And among the options given, only option (4) = 64 fulfills both the criteria.

∴ Option will be (4).

67 (2)

68 (4)
$$x + \frac{1}{x} = p$$

Squaring both sides,

$$x^2 + \left(\frac{1}{x}\right)^2 = p^2$$

$$\Rightarrow x^2 + \frac{1}{x^2} + 2 = p^2$$

$$\Rightarrow x^2 + \frac{1}{x^2} = p^2 - 2$$

Cubic both sides,

$$\left(x^2 + \frac{1}{x^2}\right)^3 = (p^2 - 2)^3$$

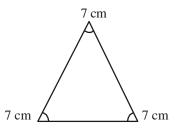
or,
$$x^6 + \frac{1}{x^6} = p^6 - 6p^4 + 9p^2 - 2$$

69 (2) Rectangle having, l = 6 unit, b = 5 unit. Area = $l \times b = 6 \times 5 = 30$ sq. unit New rectangle having l = 7, b = 4Area = $l \times b = 7 \times 4 = 28$.

Ratio =
$$\frac{30}{28}$$
 = 15:14

70 (3) Volume =
$$\frac{4}{3}\pi \left[R_1^3 + R_2^3 + R_3^3 \right]$$

$$= \frac{4}{3} \times 3.14[1 + 8 + 27] = 150.72$$


25% reduced =
$$\frac{75}{100} \times 150.72 = 113.04$$

According to question,

$$\left(\frac{4}{3}\right)\frac{22}{7} \times r^3 = 113.04$$

$$\Rightarrow$$
 r³ = 27 \Rightarrow r = 3

71 (3)

Area of region gazed

$$=\frac{\angle A+\angle B+\angle C}{360^{\circ}}(\pi R^2)$$

$$= \frac{180}{360} \left[\frac{22}{7} \times 7 \times 7 \right] = 77 \text{ sq. units}$$

72 (2) $\sin(n+1)A\sin(n+2)A + \cos(n+1)A\cos(n+2)A$ Here n is variable.

Put
$$n = 0$$

$$\sin A \cdot \sin 2A + \cos A \cdot \cos 2A$$

$$\Rightarrow$$
 cos (A – 2A) = cos (–A) = cos A

 \setminus

73 (1) Given that

$$\sin \alpha + \sin \beta = a$$
 and

$$\cos \alpha + \cos \beta = b$$

Squaring and adding them

$$a^2 + b^2 = \sin^2 \alpha + 2\sin \alpha \cdot \sin \beta$$

$$+\cos^2\alpha + \cos^2\beta + 2\cos\alpha\cos\beta$$

$$a^{2} + b^{2} = 2 + 2\cos(\alpha - \beta)$$

$$\therefore \cos(\alpha - \beta) = \frac{a^2 + b^2 - 2}{2}$$

Again, squaring and subtracting them,

[equation (i) and (ii)]

$$b^2 - a^2 = \cos^2 \alpha - \sin^2 \alpha + \cos^2 \beta - \sin^2 \beta$$

 $+2[\cos\alpha\cos\beta-\sin\alpha\sin\beta]$

$$=\cos 2\alpha + \cos 2\beta + 2\cos(\alpha + \beta)$$

$$= 2\cos(\alpha + \beta)[\cos(\alpha - \beta) + 1]$$

$$=2\cos(\alpha+\beta)\left\lceil\frac{a^2+b^2-2}{2}+1\right\rceil$$

$$=2\cos(\alpha+\beta)\left\lceil\frac{a^2+b^2}{2}\right\rceil$$

$$\therefore \cos(\alpha + \beta) = \frac{b^2 - a^2}{a^2 + b^2}$$

74 (1) % of boys in U school = 85%

:. No. of boys =
$$\frac{85}{100} \times 1000 = 850$$

% of boys in R school = 75%

No. of boys =
$$=\frac{75}{100} \times 2000 = 1500$$

Total no. of boys in school R and U = 1500 + 850 = 2350

Total % of boys =
$$\frac{2350}{3000} \times 100 = 78.33$$

75 (4) Required % =
$$\frac{2000}{2500} \times 100\% = 80\%$$